Patterns

🏠 Local Fine-Tuning Setup

Fine-tune models on your own hardware - from consumer GPUs to enterprise setups.

⚡ Performance Optimization

Memory Optimization

  • • Use QLoRA (4-bit) over LoRA
  • • Enable gradient checkpointing
  • • Reduce sequence length
  • • Use micro-batching
  • • Offload optimizer to CPU

Speed Optimization

  • • Use Flash Attention 2
  • • Enable mixed precision (FP16)
  • • Use torch.compile (PyTorch 2.0+)
  • • Optimize data loading
  • • Use efficient optimizers

System Setup

  • • Fast NVMe SSD storage
  • • Adequate system RAM
  • • Good cooling/power supply
  • • Monitor GPU temperatures
  • • Use containers for consistency

Fine-Tuning Guide

closed
🚀

Getting Started

3
🧪

Methods & Techniques

1
⚙️

Implementation

1
🌐

Deployment

2
Built by Kortexya