Patterns
๐ŸŽฏ

Context Select Patterns(CSEL)

Dynamic retrieval and assembly of relevant context through RAG, semantic search, and intelligent context curation

Complexity: highContext Management

๐ŸŽฏ 30-Second Overview

Pattern: Dynamic retrieval and assembly of relevant context through RAG, semantic search, and intelligent context curation

Why: Enables precise context selection from large knowledge bases with optimal relevance and token efficiency

Key Insight: Semantic similarity with intelligent ranking delivers contextually relevant information within token constraints

โšก Quick Implementation

1Task Analysis:Extract context requirements from task specifications
2Semantic Search:Perform similarity-based context retrieval
3Ranking & Scoring:Apply relevance scoring and prioritization
4Assembly:Dynamically compose selected context components
5Optimization:Optimize for token budget and quality balance
Example: analyze_task โ†’ semantic_search โ†’ rank_relevance โ†’ assemble_context โ†’ optimize_budget

๐Ÿ“‹ Do's & Don'ts

โœ…Use vector embeddings for semantic similarity matching
โœ…Implement hybrid search combining semantic + keyword
โœ…Cache frequently accessed context patterns
โœ…Use relevance scoring with multiple criteria
โœ…Implement dynamic context assembly based on task complexity
โŒRely solely on keyword matching for context selection
โŒSelect context without considering task relevance
โŒIgnore token budget constraints during selection
โŒUse static context selection for dynamic tasks
โŒSkip quality assessment of retrieved context

๐Ÿšฆ When to Use

Use When

  • โ€ข Knowledge-intensive applications
  • โ€ข Dynamic context curation needs
  • โ€ข Enterprise RAG implementations
  • โ€ข Intelligent search and retrieval systems

Avoid When

  • โ€ข Static context requirements
  • โ€ข Simple predefined knowledge bases
  • โ€ข High-latency sensitive applications
  • โ€ข Limited computational resources

๐Ÿ“Š Key Metrics

Relevance Precision
% selected context actually relevant
Context Coverage
% task requirements covered by selection
Selection Speed
Time to complete context assembly
Token Efficiency
Information density per token used
Cache Hit Rate
% contexts served from cache
Quality Score
Human/automated quality assessment

๐Ÿ’ก Top Use Cases

Enterprise RAG: analyze_query โ†’ search_knowledge_base โ†’ rank_documents โ†’ assemble_context โ†’ optimize_tokens
Research Assistant: identify_topics โ†’ semantic_retrieval โ†’ source_ranking โ†’ context_fusion โ†’ knowledge_synthesis
Customer Support: analyze_issue โ†’ retrieve_solutions โ†’ score_relevance โ†’ compose_response โ†’ quality_check
Code Assistant: parse_requirements โ†’ search_codebase โ†’ rank_examples โ†’ assemble_context โ†’ generate_solution
Content Curation: understand_intent โ†’ multi_source_search โ†’ relevance_filtering โ†’ context_assembly โ†’ presentation_optimization

References & Further Reading

Deepen your understanding with these curated resources

Contribute to this collection

Know a great resource? Submit a pull request to add it.

Contribute

Patterns

closed

Loading...

Built by Kortexya