Patterns
๐Ÿ“ก

Context Streaming Protocols(CTSP)

Real-time context processing with continuous streams, buffering, flow control, and low-latency updates

Complexity: highContext Management

๐ŸŽฏ 30-Second Overview

Pattern: Real-time context processing with continuous streams, buffering, flow control, and low-latency updates

Why: Enables real-time collaboration and live context sharing with efficient bandwidth usage and fault tolerance

Key Insight: Stream processing with flow control and delta compression enables scalable real-time context synchronization

โšก Quick Implementation

1Stream Design:Define streaming architecture with buffer management
2Flow Control:Implement backpressure and rate limiting mechanisms
3Synchronization:Build real-time context sync protocols
4Quality Monitor:Add latency and throughput monitoring
5Fault Tolerance:Enable graceful degradation and recovery
Example: context_stream โ†’ buffer_manage โ†’ flow_control โ†’ sync_protocol โ†’ monitor_quality โ†’ fault_recovery

๐Ÿ“‹ Do's & Don'ts

โœ…Implement circular buffers for efficient memory usage
โœ…Use delta compression to minimize bandwidth
โœ…Monitor subscriber health and apply targeted backpressure
โœ…Implement priority-based update ordering
โœ…Use vector clocks for distributed synchronization
โŒStream without proper flow control mechanisms
โŒIgnore subscriber capacity and overload them
โŒSend full context updates for minor changes
โŒSkip error handling in streaming pipelines
โŒUse blocking operations in streaming threads

๐Ÿšฆ When to Use

Use When

  • โ€ข Real-time collaborative applications
  • โ€ข Live context sharing across agents
  • โ€ข Streaming analytics and monitoring
  • โ€ข High-frequency context updates

Avoid When

  • โ€ข Batch processing requirements
  • โ€ข Low-frequency context changes
  • โ€ข Simple request-response patterns
  • โ€ข Bandwidth-constrained environments

๐Ÿ“Š Key Metrics

Stream Latency
End-to-end context delivery time
Throughput
Context updates per second
Sync Accuracy
% contexts synchronized correctly
Buffer Utilization
% memory buffer usage
Backpressure Events
Flow control activations per hour
Connection Stability
% uptime for streaming connections

๐Ÿ’ก Top Use Cases

Real-Time Collaboration: context_changes โ†’ delta_compress โ†’ stream_broadcast โ†’ sync_subscribers
Live Agent Coordination: agent_state โ†’ priority_queue โ†’ flow_control โ†’ distribute_updates
Streaming Analytics: context_metrics โ†’ buffer_batch โ†’ compress_transmit โ†’ real_time_dashboard
Multi-User Applications: user_actions โ†’ context_diff โ†’ conflict_resolve โ†’ broadcast_changes
IoT Context Streaming: sensor_data โ†’ edge_process โ†’ stream_aggregate โ†’ cloud_sync

References & Further Reading

Deepen your understanding with these curated resources

Contribute to this collection

Know a great resource? Submit a pull request to add it.

Contribute

Patterns

closed

Loading...

Built by Kortexya