Patterns
๐Ÿ”„

Sliding Window Management(SWM)

Dynamic window management with recency bias, relevance scoring, and intelligent token retention strategies

Complexity: mediumContext Management

๐ŸŽฏ 30-Second Overview

Pattern: Dynamic window management with recency bias, relevance scoring, and intelligent token retention strategies

Why: Optimizes memory usage and conversation coherence by intelligently managing context boundaries in long interactions

Key Insight: Adaptive window sizing with relevance-based retention maintains conversation quality within memory constraints

โšก Quick Implementation

1Window Sizing:Dynamically adjust window size based on task complexity
2Recency Weighting:Apply decay functions to prioritize recent content
3Relevance Scoring:Score content importance for retention decisions
4Boundary Management:Manage context transitions and coherence
5Performance Tuning:Optimize based on response quality metrics
Example: size_window โ†’ weight_recency โ†’ score_relevance โ†’ manage_boundaries โ†’ tune_performance

๐Ÿ“‹ Do's & Don'ts

โœ…Implement adaptive window sizing based on conversation complexity
โœ…Use exponential decay for recency weighting
โœ…Preserve conversation coherence at window boundaries
โœ…Monitor and adjust based on performance metrics
โœ…Cache frequently referenced context segments
โŒUse fixed window sizes for all conversation types
โŒDrop important context just because it's old
โŒIgnore context dependencies across window boundaries
โŒApply uniform relevance scoring to all content types
โŒSkip validation of window transitions

๐Ÿšฆ When to Use

Use When

  • โ€ข Long conversation management
  • โ€ข Memory-constrained environments
  • โ€ข Real-time processing requirements
  • โ€ข Adaptive conversation systems

Avoid When

  • โ€ข Short-duration interactions
  • โ€ข Static context requirements
  • โ€ข High-precision historical references needed
  • โ€ข Legal/compliance contexts requiring full history

๐Ÿ“Š Key Metrics

Context Utilization
% of window content actively used
Coherence Score
Conversation flow continuity rating
Response Quality
Output quality with windowed context
Memory Efficiency
Information density per token
Adaptation Speed
Time to adjust window parameters
Boundary Smoothness
% seamless context transitions

๐Ÿ’ก Top Use Cases

Conversation Management: track_history โ†’ apply_recency_weights โ†’ score_relevance โ†’ maintain_coherence โ†’ optimize_window
Customer Support: conversation_context โ†’ priority_scoring โ†’ window_adjustment โ†’ response_generation โ†’ quality_feedback
Educational Tutoring: learning_progression โ†’ concept_retention โ†’ adaptive_windowing โ†’ personalized_context โ†’ performance_tracking
Code Review Assistant: code_context โ†’ relevance_analysis โ†’ window_optimization โ†’ suggestion_generation โ†’ feedback_loop
Research Assistant: research_context โ†’ importance_weighting โ†’ dynamic_windowing โ†’ knowledge_synthesis โ†’ iterative_refinement

References & Further Reading

Deepen your understanding with these curated resources

Contribute to this collection

Know a great resource? Submit a pull request to add it.

Contribute

Patterns

closed

Loading...

Built by Kortexya