Patterns
๐Ÿง 

Parametric Memory(PM)

Knowledge implicitly stored within model parameters, enabling fast context-free knowledge retrieval for multi-agent agentic AI systems

Complexity: mediumMemory Management

๐ŸŽฏ 30-Second Overview

Pattern: Knowledge implicitly stored within model parameters, enabling fast context-free access

Why: Sub-millisecond retrieval, no external dependencies, consistent across agents, scales to 1000+ agents

Key Insight: Pre-trained knowledge โ†’ PEFT specialization โ†’ shared base parameters across agent network

โšก Quick Implementation

1Pre-train:Embed domain knowledge in model weights
2Fine-tune:Use PEFT methods (LoRA, QLoRA) for efficiency
3Specialize:Create agent-specific parameter branches
4Share Base:Common foundation across agent network
5Monitor:Track knowledge access & parameter usage
Example: base_llm โ†’ domain_finetune โ†’ agent_specialization โ†’ shared_deployment

๐Ÿ“‹ Do's & Don'ts

โœ…Use parameter-efficient fine-tuning (LoRA, QLoRA, MoRA)
โœ…Share base parameters across agent network for consistency
โœ…Monitor parameter specialization patterns for knowledge storage
โœ…Implement knowledge consolidation to prevent parameter bloat
โœ…Version control model parameters for rollback capability
โŒFull parameter retraining for new knowledge (expensive & risky)
โŒStore time-sensitive information in parametric memory
โŒIgnore knowledge cutoff dates and factual accuracy degradation
โŒDeploy without parameter redundancy for fault tolerance
โŒMix incompatible parameter versions across agent instances

๐Ÿšฆ When to Use

Use When

  • โ€ข Stable domain knowledge required
  • โ€ข Fast inference speed critical
  • โ€ข Multi-agent consistency needed
  • โ€ข Offline deployment scenarios
  • โ€ข Cost-sensitive applications

Avoid When

  • โ€ข Rapidly changing information
  • โ€ข Regulatory compliance updates
  • โ€ข Real-time data integration
  • โ€ข User-specific customization
  • โ€ข Frequent knowledge updates

๐Ÿ“Š Key Metrics

Knowledge Accuracy
% correct factual responses
Inference Speed
Tokens/second generation rate
Parameter Efficiency
Knowledge/parameter ratio
Consistency Score
Cross-agent response similarity
Memory Footprint
GB required per agent
Update Cost
$ per knowledge refresh cycle

๐Ÿ’ก Top Use Cases

Scientific Research Agents: Physics, chemistry, biology knowledge embedded (consistent across 100+ agents)
Legal Document Analysis: Case law, statutes, procedures in parameters (instant access, no external DB)
Medical Diagnosis Support: Medical knowledge, drug interactions, symptoms (HIPAA-compliant, offline)
Financial Analysis: Market fundamentals, accounting principles, regulations (real-time inference)
Code Generation: Programming languages, frameworks, best practices (multi-language consistency)

References & Further Reading

Deepen your understanding with these curated resources

Contribute to this collection

Know a great resource? Submit a pull request to add it.

Contribute

Patterns

closed

Loading...

Built by Kortexya