Loading...
Parametric Memory(PM)
Knowledge implicitly stored within model parameters, enabling fast context-free knowledge retrieval for multi-agent agentic AI systems
๐ฏ 30-Second Overview
Pattern: Knowledge implicitly stored within model parameters, enabling fast context-free access
Why: Sub-millisecond retrieval, no external dependencies, consistent across agents, scales to 1000+ agents
Key Insight: Pre-trained knowledge โ PEFT specialization โ shared base parameters across agent network
โก Quick Implementation
๐ Do's & Don'ts
๐ฆ When to Use
Use When
- โข Stable domain knowledge required
- โข Fast inference speed critical
- โข Multi-agent consistency needed
- โข Offline deployment scenarios
- โข Cost-sensitive applications
Avoid When
- โข Rapidly changing information
- โข Regulatory compliance updates
- โข Real-time data integration
- โข User-specific customization
- โข Frequent knowledge updates
๐ Key Metrics
๐ก Top Use Cases
References & Further Reading
Deepen your understanding with these curated resources
Academic Papers
A Survey on the Memory Mechanism of Large Language Model based Agents (Zhang et al., 2024)
The Rise of Parameter Specialization for Knowledge Storage (Hong et al., 2024)
Parametric vs Non-parametric Memory in Retrieval-augmented LLMs (Farahani & Johansson, 2024)
Augmented Large Language Models with Parametric Knowledge Guiding (Luo et al., 2023)
Parameter-Efficient Methods
Contribute to this collection
Know a great resource? Submit a pull request to add it.
Parametric Memory(PM)
Knowledge implicitly stored within model parameters, enabling fast context-free knowledge retrieval for multi-agent agentic AI systems
๐ฏ 30-Second Overview
Pattern: Knowledge implicitly stored within model parameters, enabling fast context-free access
Why: Sub-millisecond retrieval, no external dependencies, consistent across agents, scales to 1000+ agents
Key Insight: Pre-trained knowledge โ PEFT specialization โ shared base parameters across agent network
โก Quick Implementation
๐ Do's & Don'ts
๐ฆ When to Use
Use When
- โข Stable domain knowledge required
- โข Fast inference speed critical
- โข Multi-agent consistency needed
- โข Offline deployment scenarios
- โข Cost-sensitive applications
Avoid When
- โข Rapidly changing information
- โข Regulatory compliance updates
- โข Real-time data integration
- โข User-specific customization
- โข Frequent knowledge updates
๐ Key Metrics
๐ก Top Use Cases
References & Further Reading
Deepen your understanding with these curated resources
Academic Papers
A Survey on the Memory Mechanism of Large Language Model based Agents (Zhang et al., 2024)
The Rise of Parameter Specialization for Knowledge Storage (Hong et al., 2024)
Parametric vs Non-parametric Memory in Retrieval-augmented LLMs (Farahani & Johansson, 2024)
Augmented Large Language Models with Parametric Knowledge Guiding (Luo et al., 2023)
Parameter-Efficient Methods
Contribute to this collection
Know a great resource? Submit a pull request to add it.