Agentic Design

Patterns
๐Ÿ”„

Sequential Pipeline Agents(SPA)

Specialized agents process tasks in a linear pipeline where each agent's output becomes the next agent's input

Complexity: mediumMulti-Agent

๐ŸŽฏ 30-Second Overview

Pattern: Specialized agents process tasks sequentially where each agent's output feeds the next agent's input

Why: Enables expertise specialization, quality control gates, independent optimization, and clear error isolation per stage

Key Insight: Linear agent pipeline with validation checkpoints - each stage optimized for specific capabilities

โšก Quick Implementation

1Design Stages:Define specialized agent roles & capabilities
2Define Interfaces:Standardize input/output schemas between agents
3Implement Pipeline:Chain agents with validation & error handling
4Add Checkpoints:Quality gates & fallback mechanisms
5Monitor Flow:Track performance & bottlenecks per stage
Example: ResearchAgent โ†’ ContentAgent โ†’ EditorAgent โ†’ ReviewAgent โ†’ PublishAgent

๐Ÿ“‹ Do's & Don'ts

โœ…Design agents for single, specialized responsibilities
โœ…Use structured data formats between agents (JSON/schemas)
โœ…Implement quality checkpoints at each stage transition
โœ…Add circuit breakers for failed stages
โœ…Log detailed execution traces for debugging
โœ…Cache intermediate results for expensive stages
โŒCreate monolithic agents handling multiple concerns
โŒAllow unstructured data to flow between stages
โŒSkip validation between pipeline stages
โŒLet pipeline failures cascade without recovery
โŒIgnore stage-specific performance bottlenecks

๐Ÿšฆ When to Use

Use When

  • โ€ข Multi-step workflows with distinct phases
  • โ€ข Tasks requiring specialized expertise per stage
  • โ€ข Quality-critical processes needing validation gates
  • โ€ข Workflows where stages can be independently optimized
  • โ€ข Complex transformations with clear dependencies

Avoid When

  • โ€ข Simple single-step tasks
  • โ€ข Highly interactive or conversational flows
  • โ€ข Real-time systems requiring low latency
  • โ€ข Tasks requiring dynamic branching or loops
  • โ€ข When stage dependencies are unclear

๐Ÿ“Š Key Metrics

Pipeline Success Rate
End-to-end completion percentage
Stage Performance
Latency & throughput per agent
Quality Gates
Validation success rate at checkpoints
Error Recovery
Failed stage recovery percentage
Resource Utilization
Compute/API costs per stage
Bottleneck Analysis
Slowest stage identification

๐Ÿ’ก Top Use Cases

Content Production: Research โ†’ Draft โ†’ Edit โ†’ Review โ†’ Publish (journalism, marketing)
Data Processing: Extract โ†’ Transform โ†’ Validate โ†’ Enrich โ†’ Load (ETL pipelines)
Code Review: Parse โ†’ Analyze โ†’ Test โ†’ Review โ†’ Merge (software development)
Document Analysis: OCR โ†’ Extract โ†’ Classify โ†’ Summarize โ†’ Archive (legal, finance)
Scientific Analysis: Data Collection โ†’ Processing โ†’ Analysis โ†’ Validation โ†’ Reporting

References & Further Reading

Deepen your understanding with these curated resources

Contribute to this collection

Know a great resource? Submit a pull request to add it.

Contribute

Patterns

closed

Loading...